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Abstract The western boundary currents are characterized by abundant diazotrophs including
Trichodesmium, which may fuel N, fixation when they intrude into marginal seas. The Kuroshio, a western
boundary current in the North Pacific, flows into the East China Sea (ECS) and southern Yellow Sea (SYS),
which transports abundant Trichodesmium and diatom-diazotroph associations (DDAs). Additionally, low
nitrogen:phosphorus (N:P) ratio and relatively abundant dissolved iron have been observed in the offshore ECS
because of the Kuroshio intrusion as well as riverine/atmospheric inputs of P and iron. We hypothesized that
the intrusion of Kuroshio greatly enhanced N, fixation in the ECS and SYS. N, fixation rates (NFRs) were
measured using a >N, bubble method during summer 2013. The surface and depth-integrated NFRs in the ECS
and SYS were 1.45 nmol N L~! d~! and 81.7 pumol N m~2 d~! on average, respectively, with the highest values
of 13.84 nmol N L~! d~! and 511.8 pmol N m~2 d~!. We found that NFRs were significantly higher in the

ECS oceanic (Kuroshio water) and mesohaline regions (Kuroshio-affected water) than in the SYS and the ECS
low-salinity and coastal upwelling regions. NFR was significantly positively correlated with the densities of
Trichodesmium and DDAs, salinity, and temperature but was negatively with NO,~ and N:P ratio. Generalized
additive models confirmed that spatial variation in NFR was overwhelmingly contributed by Trichodesmium
density. These findings suggested that the Kuroshio intrusion significantly enhanced N, fixation in the ECS
through promoting growth of filamentous diazotrophs and providing appropriate nutrient environment.

Plain Language Summary Marine diazotrophs convert unbioavailable nitrogen (N,) into
bioavailable nitrogen (NH,) through N, fixation, which relieves the restriction of nitrogen limitation to
phytoplankton primary production and enhances oceanic carbon fixation, resulting in greater net sequestration
of CO, and carbon sink. The western boundary currents (e.g., Kuroshio) are characterized by abundant
diazotrophs including Trichodesmium, which may fuel N, fixation when they intrude into marginal seas. In
order to test this hypothesis, N, fixation rates were measured during summer in the East China Sea (ECS)

and southern Yellow Sea (SYS) influenced by the Kuroshio intrusion. We observed active N, fixation in the
Kuroshio mainstream and affected waters in the ECS, which were characterized by abundant Trichodesmium
and diatom-diazotroph associations, severe deficient nitrogen, and available iron and phosphorus. Nevertheless,
relatively low N, fixation rates were detected in the SYS and the ECS low-salinity and coastal upwelling
regions because of low-density filamentous diazotrophs and sufficient nitrogen. Our results revealed great
enhancement of N, fixation by the intrusion of Kuroshio in the marginal seas. This study provided high
spatial resolution data sets of N, fixation rate in the ECS and SYS during summer, which will be useful for
understanding nitrogen and carbon biogeochemical processes.

1. Introduction

Nitrogen (N) is an essential element to phytoplankton. Although N, comprises a majority of the atmosphere and
is abundantly dissolved in seawater, bioavailable N is deficient throughout most of the surface ocean and thereby
restricts global oceanic primary production (Moore et al., 2013; Tyrrell, 1999). Marine diazotrophs convert unbi-
oavailable N (N,) into bioavailable N (NH,) through N, fixation, which has been recognized as an important
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external (new) N source in global ocean (Capone et al., 2008; Dugdale & Goering, 1967). Their fixed N relieves
the restriction of N limitation to primary production in oligotrophic ocean, which enhances phytoplankton
carbon (C) fixation and biological pump function, resulting in greater net sequestration of CO, (Falkowski, 1997,
Subramaniam et al., 2008). Therefore, C sink in the ocean is largely supported by N, fixation. Under the visions of
C neutralization and climate change (ocean warming, pCO, elevation, and acidification; Jiao, 2021), N, fixation
is receiving greater interest (Hutchins et al., 2015; Jiang, Fu, et al., 2018; Zehr & Capone, 2020). However, the
rates, budget, spatial distribution, and controlling factors of N, fixation are still highly uncertain at local, regional,
and global scales (Bonnet et al., 2017; Luo et al., 2012; Tang et al., 2019; Wen et al., 2022).

The distribution, growth, and N, fixation of diazotrophs are generally thought to be limited by phosphorus (P)
and iron (Fe) through much of the tropical and subtropical oceans (Mills et al., 2004; Sohm et al., 2011; Tanita
et al., 2021; Zehr & Capone, 2020). The western boundary currents are mid-latitude, poleward-flowing, warm
currents located at the western edge of ocean basin, which are characterized by high temperature, salinity, and
light penetration. Because they are close to the mainland, high terrestrial inputs of P and Fe are observed therein
compared with the open ocean (Jickells et al., 2005; Martiny et al., 2019), probably resulting in an alleviation
of P and Fe limitation of diazotrophs (Shiozaki et al., 2014). Particularly diazotrophic cyanobacteria Trichode-
smium (Capone et al., 1997), frequently occurs and occasionally blooms in western boundary currents, including
the Gulf Stream (Palter et al., 2020), Brazil Current (Detoni et al., 2016), East Australian Current (Armbrecht
et al., 2015), and Kuroshio (Jiang et al., 2019; Jiang, Li, et al., 2018; Shiozaki, Takeda, et al., 2015). Western
boundary currents seem to be hotspots of marine N, fixation (Shiozaki et al., 2010; Tang et al., 2019). Therefore,
their intrusions into marginal seas may fuel regional N, fixation. Emerging evidence has shown abundant diaz-
otrophs or active N, fixation in subtropical-temperate seas affected by the Gulf Stream (Palter et al., 2020) and
Brazil Current (Detoni et al., 2016, 2022). However, responses of diazotrophic composition and N, fixation to the
intrusions of western boundary currents including Kuroshio remain poorly understood.

The Kuroshio, originates from the Pacific North Equatorial Current, its mainstream flows northeastward along
the East China Sea (ECS) shelf break (200-1,000-m isobaths; Figure 1). Under interaction between Kuroshio
and topography, the Kuroshio Surface Water (60—120 m depth) and Kuroshio Subsurface Water (120-250 m
depth) intrude onto the ECS shelf from the northeast of Taiwan, forming the offshore and nearshore Kuroshio
Branch Currents near 27°N, 122°E, respectively (Yang et al., 2012). During summer, the intrusion intensity of
nearshore branch is strongest, which can intrude shoreward near 50-m isobath (close to Zhejiang Province) and
northward to Changjiang Estuary (30.5°N) (Yang et al., 2012, 2018). In addition, Taiwan Warm Current (TWC),
a mixture of the intruded Kuroshio water and the Taiwan Strait Water, flows northward and northeastward on the
ECS shelf and increases appreciably during summer (approaches the southern Yellow Sea [SYS]) under prevail-
ing southwestern monsoon (Zhou et al., 2015), resulting a remarkable upwelling along the Zhejiang coast (Lii
et al., 2006). Earlier studies have indicated that summertime wind stress (particularly southwestern monsoon)
plays an important role in the Kuroshio intrusion and TWC transport (Yang et al., 2018; Zhou et al., 2015). The
intrusions of Kuroshio and branches bring a large amount of nutrients (particularly P) and numerous tropical
species and consequently regulate ecosystem and biogeochemical processes in the ECS and SYS (ECSYS; Yang
etal., 2017, 2018).

Previous studies have demonstrated that abundant diazotrophic cyanobacteria including Trichodesmium is trans-
ported by the Kuroshio (Cheung et al., 2019; Jiang et al., 2019; Shiozaki et al., 2018), which is widely distributed
and even blooms (>1,000 trichomes L) in the ECSYS, particularly in warm seasons (Jiang, Li, et al., 2018;
Marumo & Asaoka, 1974; Shiozaki et al., 2010). In addition, severe N deficiency (N:P ratio usually <6) accord-
ing to Redfield N:P ratio (16; Redfield, 1958) and relatively abundant dissolved Fe (dFe; 0.47-10.01 nmol L~!) on
the surface are observed in the offshore ECS (Zhang et al., 2022), because of riverine/atmospheric inputs as well
as intrusion of nearshore Kuroshio Branch Current (Guo et al., 2014; Zhang et al., 2022). This intrusion across the
shelf break transports a substantial amount of dFe to the broad shelf, representing natural Fe fertilization in the
ECS (Zhang et al., 2022). The dFe concentrations in the ECS shelf and the adjacent Kuroshio mainstream were
found to be higher than in the upstream Kuroshio of the Luzon Strait (0.25 nmol L~'; Wen et al., 2022) and east
of Taiwan (<0.4 nmol L~'; Sato et al., 2021). Our earlier observation has revealed that the intrusions of Kuroshio
and TWC promoted growth of Trichodesmium and diatom-diazotroph associations (DDAs; Richelia/Calothrix)
in the ECS and even off the Changjiang Estuary (Jiang et al., 2017, 2019; Jiang, Li, et al., 2018). Such suitable
macro- and micro-nutrient conditions and abundant filamentous diazotrophs may be favorable for N, fixation in
the ECSYS. Accumulative evidence has shown much higher NFRs in the Kuroshio (up to 400 pmol N m=2 d~;
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Figure 1. Schematic showing the (a) study area in the Pacific Ocean and the (b) circulation and (c) sampling stations in

the East China Sea (ECS) and southern Yellow Sea (SYS) during summer (Chen, 2009; Yang et al., 2012). KBC: Kuroshio
Branch Current; NKBC: nearshore Kuroshio Branch Current; TWC: Taiwan Warm Current; CDW: Changjiang Diluted
Water; YSCC: Yellow Sea Coastal Current; YSCW: deeper Yellow Sea Cold Water. The ECS and SYS are divided by a dark
red line from the Changjiang Estuary to Cheju Island. The ECS is divided into four regions using dark red lines, including the
coastal upwelling, low-salinity (surface salinity <31), mesohaline (surface salinity at 31-34), and oceanic (surface salinity
>34) regions, according to water mass distribution (Chen, 2009; Lii et al., 2006; Su & Yuan, 2005).

Shiozaki et al., 2010; Shiozaki, Takeda, et al., 2015; Wen et al., 2022) than those reported in most global seas
(Luo et al., 2012; Tang et al., 2019). Therefore, N, fixation in the ECSYS probably contributes appreciably to
regional N budget due to intrusions of Kuroshio and branches. However, direct measurements of N, fixation rates
(NFRs) therein remain sparse and spatially limited (Shiozaki et al., 2010; Shiozaki, Takeda, et al., 2015; Wu
et al., 2018; Zhang et al., 2012). Because high spatial resolution NFR data covered the entire shelf including the
Kuroshio mainstream is lacking, N, fixation flux and controlling factors in the ECSYS remain unclear.

Although earlier work has confirmed the regulation of diazotrophic (particularly Trichodesmium) composition
and distribution by the Kuroshio (Jiang et al., 2019; Jiang, Li, et al., 2018; Shiozaki et al., 2010; Shiozaki, Takeda,
et al., 2015), influence of the Kuroshio intrusion on N, fixation across the entire ECSYS is still unrevealed, due
to inadequate NFR data from direct measurements. We speculated that the intrusions of Kuroshio and branches
(nearshore Kuroshio Branch Current and TWC) greatly enhanced summer N, fixation in the ECSYS through
transporting abundant diazotrophic cyanobacteria and providing appropriate physicochemical environment (e.g.,
high temperature, severe N deficiency, and abundant dFe). Here, two interdisciplinary cruises were conducted in
the ECSYS during July and August (summer) 2013. NFRs were measured using an original !N, bubble method.
Data of filamentous diazotrophs and physicochemical properties were obtained synchronously. Our objectives
were (a) to examine the spatial distribution of NFR under the intrusion of Kuroshio, (b) to explore the controlling
factors (e.g., abundance of filamentous diazotrophs, temperature, salinity, and nutrients) of N, fixation, and
(c) to estimate local N, fixation budget and contribution by filamentous diazotrophs. This study addresses the
inadequacy of spatial scale in NFR in the ECSYS including the Kuroshio mainstream, which contributes a more
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comprehensive picture of how the Kuroshio intrusion regulates N, fixation. In addition, our estimation of N,
fixation flux is useful for understanding regional N biogeochemical processes and N budget.

2. Materials and Methods
2.1. Study Area and Sampling Station

During summer, the ECSYS is principally characterized by the N-limited, saline, offshore Kuroshio and TWC
Water and the P-limited, fresh Changjiang Diluted Water (CDW) despite the YS Cold Water and Shelf Mixed Water
(Figure 1), showing substantial spatial changes in physicochemical properties (Chen, 2009; Su & Yuan, 2005;
Yang et al., 2012). The ECSYS receives a large amount of freshwater and associated nutrients (particularly N)
from the Changjiang and induces the CDW to extend northeastward (Chen, 2009; Zhang et al., 2020). Therefore,
the ECSYS inner shelf and Changjiang Estuary are characterized by abundant N and high N:P ratio, whereas
outer shelf is N depleted (Chen, 2009; Zhang et al., 2022). The data presented here were collected from two
cruises aboard the R/V Dongfanghong 2* during July and August 2013, which occupied a high spatial resolution
across the ECSYS (Figure 1).

2.2. Data Collection

Seawater samples at each station were collected from 4 to 8 discrete depths (from surface to bottom) using 12-L
Niskin bottles mounted on a SBE 917 Plus CTD rosette for analysis of nutrients, N isotopes, chlorophyll a (Chl-
a), and filamentous cyanobacteria. Water depths included 2 or 3, 10, 30, 50, 75, 100, 150, 200-m depth and
deep Chl-a maximum layer. Salinity, temperature, depth, and turbidity were measured in situ. Mixed-layer depth
(MLD) was defined as the depth where density (o,; derived from salinity, temperature, and pressure) was higher
0.125 kg m~* than that on the surface (Huang & Russell, 1994). NO,~ and dissolved reactive phosphorus (DRP)
were measured using a continuous-flow analyzer (Skalar San**). Water samples (100-250 mL) for Chl-a analy-
sis were filtered onto 0.7-pm GF/F filters using low cacuum pressure. After extraction in 90% acetone for 24 hr
at —20°C Chl-a concentrations were analyzed using a Turner Design Fluorometer. Water samples (1,000 mL)
of filamentous cyanobacteria were fixed with glutaraldehyde to a final concentration of 2%. Colonial and free
trichomes of Trichodesmium and Richelia/Calothrix heterocysts (symbiotic with Hemiaulus, Rhizosolenial
Guinardia, and Chaetoceros/Bacteriastrum) were enumerated on a 1-mL scaled slide using a fluorescence micro-
scope (Leica DM3000B). Depth-integrated densities (DIDs) of their trichomes or heterocysts were calculated
using trapezoidal integration over the sampling depths. Partial data on salinity, temperature, turbidity, nutrients,
Chl-qa, and filamentous cyanobacteria were derived from previous studies (Jiang et al., 2019; Zhang et al., 2022).

Seawater for the NFR incubation experiment was sampled from three depths that corresponded to 100%, 10%,
and 1% of surface irradiance using Niskin bottles, according to the PAR in the water column. NFRs were deter-
mined using the N, incorporation technique (Montoya et al., 1996; Zhang et al., 2012). Briefly, duplicate water
samples were filled bubble free into 580-mL transparent glass bottles. After filling, 1 mL N, (99 at% PN,
Cambridge Isotope Laboratories) was spiked with a septum using a gastight syringe (Agilent), with the pressure
across the septum balanced by another syringe. Each bottle was gently shaken for several minutes before incuba-
tion. Incubations were performed in flow-through deck-board incubators and were covered with neutral-density
screens to adjust light densities (100%, 10%, and 1% of natural sea-surface irradiance). After 24-hr incubation,
N, fixation samples were filtered under gentle vacuum through a precombusted (4 hr at 450°C) Whatman GF/F
filter membrane and then were immediately stored at —20°C. Natural >N abundance in particulate organic N
(PON) was measured for calculating the >N enrichment during incubation. At the land laboratory, the filters for
PON and >N measurements were dried at 60°C and pelletized in tin capsules. The PON concentration and >N
abundance (8"°N; %o) were measured using a Flash 2000 elemental analyzer coupled to a isotope ratio mass
spectrometer. The NFRs and their detection limits (minimum quantifiable rates; 0.01-1.64 nmol N L~! d~!) were
calculated following Montoya et al. (1996). Depth-integrated NFR at each station was calculated by trapezoidal
integration over the sampling depths in the euphotic zone (1% of surface PAR). The present incubation experi-
ment (original '’N, bubble method) might underestimate the NFR, because the injected gas bubble was not likely
to attain equilibrium with the surrounding water during the incubation period and results in a lower actual "N,
concentration than theoretically calculated (Mohr et al., 2010). However, the level of underestimation of the
bubble method is thought to be low in Trichodesmium-dominant waters because Trichodesmium can float to the
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Table 1

Regional Differences of Environmental Variables in the ECS and SYS (ECSYS) by Using Kruskal-Wallis (H) Test

ECS coastal upwelling region ~ ECS low-salinity region ~ ECS mesohaline region =~ ECS oceanic region

Parameters (n=16) (n=18) (n =30) (n=06) SYS (n = 16) H

Surface salinity 322+ 14° 29.2 +£0.8* 33.2+0.8¢ 342 +£0.1° 30.5+0.7° 667
Surface temperature (°C) 239+ 1.8 27.3 +£0.7° 28.6 + 0.8° 29.4 +0.84 24.5 +£1.2*  68.9%**
Integration depth (m) 39 + 162 61 +17° 113 + 48¢ 195 + 12¢ 59 +23b 529k
MLD (m) 8.1 +3.6* 13.3 + 4.6 18.2 +9.5¢ 44.0 +21.54 11.9 +£3.2%  34.0%#*
Surface turbidity (NTU) 277 £3.79¢ 0.19 £ 0.14¢ 0.10 + 0.08° 0.02 £ 0.01* 0.62 + 1.10¢  50.7***
Surface NO,~ (pmol L~1) 12.61 + 8.67°¢ 2.64 + 3.03° 0.35 + 1.05% 0.06 + 0.07* 2.03 £4.57* 44.0%**
Surface DRP (pmol L) 0.66 + 0.44° 0.13 + 0.032 0.24 +0.21* 0.13 + 0.08* 0.17 +£ 0.06* 26.8%**
Surface NO,7/DRP ratio 219 +16.9° 19.9 + 20.6° 1.5 +£2.6* 0.8 +0.9* 8.2+ 13770 4] .4%%*
Surface Chl-a (mg m—3) 6.34 + 7.56¢ 1.79 + 2.22¢ 0.33 £ 0.41° 0.08 + 0.05* 3.54 £5.06° 53.3%**

Note. Low-salinity: salinity <31; mesohaline: 31 < salinity <34; oceanic: salinity >34. MLD: Mixed-layer depth; DRP: dissolved reactive phosphorus; Chl-a:
chlorophyll a. Superscripted lower-case letters within the same row indicate significant (p < 0.05) difference. ***p < 0.001.

top of the bottle and directly use the added SN, gas (GroBkopf et al., 2012). Since Trichodesmium is abundant
in the ECSYS (Jiang et al., 2019; Jiang, Li, et al., 2018), particularly in the Kuroshio mainstream and affected
waters (Jiang, Li, et al., 2018; Marumo & Asaoka, 1974; Shiozaki, Takeda, et al., 2015), the magnitude of under-
estimation of the bubble method performed in our study area was likely low. Regardless, our data remains useful
to reveal spatial distribution of N, fixation in the ECSYS and is comparable with the earlier results in Kuroshio
and adjacent seas.

2.3. Data Analysis

To clarify influence of saline Kuroshio intrusion on NFR and associated filamentous cyanobacteria and physico-
chemical variables, the ECS was divided into four regions, including the coastal upwelling, low-salinity (surface
salinity <31; mainly controlled by the CDW), mesohaline (surface salinity at 31-34, mainly influenced by the
TWC and nearshore Kuroshio Branch Current), and oceanic (surface salinity >34; the Kuroshio mainstream)
regions (Figure 1). These four regions of the ECS were divided according to the thermohaline properties of
different water masses (Chen, 2009; Lii et al., 2006; Su & Yuan, 2005). SPSS 20.0 was used for data analysis.
A Kruskal-Wallis one-way analysis of variance was used to test for significant (p < 0.05) differences in envi-
ronmental variables, Trichodesmium and Richelia/Calothrix densities, and NFRs among regions because most
variables failed to satisfy the assumptions of normality using Kolmogorov—Smirnov test and homogeneity using
Levene's test. Kruskal-Wallis test statistic (H value) is a measure of the observed spread of rank average, which is
highly associated with the significance of regional difference for each variable. Relationship between NFRs and
environmental variables and DIDs of filamentous diazotrophs was conducted using Spearman's rank correlation
or regression analysis. Generalized additive models (GAMs) were used to estimate the relative contribution of
environmental variables (temperature, salinity, MLD, turbidity, and nutrients) and densities of Trichodesmium
and DDA to variations in surface and depth-integrated NFRs using R software. GAMs were established using
the mgcViz package (version 4.0.2). Model building used a forward stepwise approach with the greatest cumu-
lative explained deviation. The model with the lowest Akaike information criterion value and greatest adjusted
R? was selected as the optimal model. ODV 4 was used to depict the spatial distribution of NFR, filamentous
diazotrophic density, and environmental variables.

3. Results
3.1. Environmental Parameters

The physicochemical parameters differed significantly (p < 0.001) among regions of the ECSYS divided accord-
ing to surface salinity distribution (Table 1). Surface salinity was markedly low (<31) off the Changjiang Estuary
and was high in the ECS open waters, because of the CDW extension and the strong intrusions of nearshore
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Figure 2. Environmental parameters (except MLD) on the surface in the ECSYS. (a) salinity, the dashed polygons 1, 2, 3, 4, and 5 (white Arabic numerals) indicate the
coastal upwelling, low-salinity, mesohaline, and oceanic regions of the ECS and the SYS, respectively; (b) temperature (°C); (c¢) turbidity (NTU); (d) mixed-layer depth
(MLD; m); (e) NO,~ (umol L~1; (f) dissolved reactive phosphorus (DRP; pmol L="); (g) NO,/DRP ratio; (h) chlorophyll a (Chl-a; mg m=3).

Kuroshio Branch Current and TWC (Figure 2a). The ECS oceanic region was characterized by the Kuroshio
mainstream with average surface salinity of 34.2 + 0.1. The ECS mesohaline region was influenced by the
nearshore Kuroshio Branch Current and TWC with average surface salinity of 33.2 + 0.8. Surface temperature
showed significantly (p < 0.05) lower in the SYS (24.5 + 1.2°C) and the ECS coastal region (27.3 + 0.7°C) than
in the ECS oceanic (29.4 + 0.8°C) and mesohaline (28.6 + 0.8°C) regions (Figure 2b). Additionally, obvious
upwelling with low temperature (23.9 + 1.8°C) and high salinity (32.2 + 1.4) was observed on the surface in the
ECS coastal waters, because of shoreward intrusion of deeper TWC and modified nearshore Kuroshio Branch
Current. MLD was high in the Kuroshio mainstream (up to 78 m) and on the middle ECS shelf (Figure 2c), which
was consistent with the intrusion of nearshore Kuroshio Branch Current. The turbidity decreased obviously from
the inshore (>10 NTU) to offshore (<0.1 NTU; Figure 2d). The MLD, integration depth, and surface salinity
and temperature were significantly (p < 0.05) higher in the ECS oceanic and mesohaline regions than in the ECS
coastal upwelling and low-salinity regions and in the SYS (Table 1). However, turbidity showed opposite regional
distribution.

The surface concentrations of NO,~ (>10 pmol L~!; Figure 2e) and DPR (>1 pmol L~!; Figure 2f) were mark-
edly high in the Changjiang Estuary and coastal upwelling waters but low in the ECS oceanic waters (due to
oligotrophic Kuroshio) and in the central part of the SYS (due to strong stratification caused by deeper YS Cold
Water). Particularly in the Kuroshio mainstream, NO,~ concentrations were undetectable at most stations. DRP
concentration was relatively high (>0.4 pmol L~!) from the northeast of Taiwan to Zhejiang coastal upwelling
waters and the Changjiang Estuary, indicating important sources of DRP from Changjiang and intrusion of
nearshore Kuroshio Branch Current. The distribution of NO,/DRP ratio was consistent with distribution of
NO,~ concentration, which showed higher value in the Changjiang Estuary (up to 85) than in the ECS oceanic
waters and in the central part of SYS (Figure 2g). Chl-a concentrations were higher in the Changjiang Estuary
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and coastal upwelling waters (>2 mg m~>) than in the ECS oceanic waters (usually <0.2 mg m~3) and in the
central part of the SYS (<0.6 mg m~3). The concentrations of NO,~, DRP, and Chl-a and NO,~/DRP ratio were
significantly (p < 0.05) higher in the ECS coastal upwelling and low-salinity region than in the ECS oceanic and
mesohaline regions and in the SYS (Table 1).

3.2. Filamentous Cyanobacteria Density

The trichome of Trichodesmium in the ECSYS included colonial and free forms. The average colonial and free
trichomes on the surface in the ECSYS were 77.0 and 95.5 trichomes L™, respectively, whereas the average
colonial and free trichomes in the water column were 3,359 x 103 and 5,118 x 103 trichomes m~2. The colony
was usually found in the ECS mesohaline and oceanic regions, particularly in the Kuroshio mainstream with the
highest density of 2,083 trichomes L~! on the surface and of 65.20 X 10° trichomes m~2 in the euphotic zone
(Figure 3). The highest surface density (1,275 trichomes L™!) and DID (74.10 x 10° trichomes m~2) of free
trichomes was also found therein. However, free trichomes were widely distributed across the entire ECSYS,
although DID (4.1 x 103 trichomes m~2) in the SYS was extremely low. Figure 3 showed that Trichodesmium
density on the surface (<3,358 trichomes L~!) and in the water column (<121 x 10° trichomes m~2) decreased
from the southeast to the north and the northwest along the intrusion path of nearshore Kuroshio Branch Current.
Both the colonial and free trichomes of Trichodesmium were significantly (p < 0.05) higher in the ECS oceanic
and mesohaline regions than in the SYS and in the ECS low-salinity and upwelling regions (Figure 3).

DDAs in the ECSYS included Richelia and Calothrix. Richelia symbioses inside the cells of host diatoms Hemi-
aulus, Rhizosolenia, and Guinardia, whereas Calothrix attached epiphytically to host diatoms Chaetoceros and
Bacteriastrum. DDAs were not detected in the SYS. The average surface density and DID of Richelia/Calothrix in
the ECS were 16.3 heterocysts L~ and 2160 x 10° heterocysts m~2, respectively, with the highest surface density
of 252.1 heterocysts L' and DID of 25.74 x 10 heterocysts m~2. Richelia/Calothrix DIDs were significantly
(p < 0.05) higher in oceanic and mesohaline regions than in coastal upwelling and low-salinity regions (Figure 3).

3.3. N, Fixation Rate (NFR)

The average depth-integrated NFRs in the euphotic zone in the ECSYS ranged from undetectable to
511.8 pmol N m~2 d~!, averaged at 81.7 + 151.2 pmol N m~2 d~! (n = 29). The surface NFRs ranged from
undetectable to 13.84 nmol N L~! d~!, averaged at 1.45 + 2.71 nmol N L~! d~! (n = 39). NFRs were undetected
at several stations (e.g., P1 and T5) in the ECS low-salinity and coastal upwelling regions. Figure 4 showed high
NFR in the southeastern ECS but low in the Changjiang Estuary and ECS coastal waters. The depth-integrated
NFR was significantly (p < 0.05) higher in the ECS oceanic region than in the SYS and in the ECS mesohaline,
low-salinity, and coastal upwelling regions, which averaged at 428.3, 11.2, 47.8, 9.2, and 2.8 pmol N m~2 d~!,
respectively (Figure 4c). The surface NFRs among regions showed similar spatial variation (Figure 4d). The aver-
age NFRs (n = 29) based on water column measurements under 100%, 10%, and 1% of natural surface irradiance
were 1.74 + 3.09, 1.54 + 2.67, and 0.38 + 0.34 nmol N L~! d~, respectively (Table 2).

3.4. Relationship Between NFR and Filamentous Diazotrophs and Physicochemical Factors

Spearman's correlation showed that the depth-integrated and surface NFRs in the ECSYS were significantly
(p < 0.05) positively correlated with surface temperature and salinity and MLD but was negatively with surface
turbidity, NO,~, DRP, NO,~/DRP ratio, and Chl-a. Figure 5 showed that both the surface and depth-integrated
NFRs were markedly higher in the Kuroshio Surface Water (Kuroshio mainstream; temperature >28°C and salin-
ity >34) and TWC Water (mixing with the intrusion of nearshore Kuroshio Branch Current; temperature >28°C
and salinity: 32-34) than in the CDW (salinity <31), Shelf Mixed Water, and upwelling water (temperature
<26.5°C; salinity >31.5). The Shelf Mixed Water can be considered a mixture of coastal water with nearshore
Kuroshio Branch Current Water and TWC Water. Regression analysis showed that the depth-integrated and
surface NFRs were significantly (p < 0.001) positively correlated with densities of Trichodesmium and Richelia/
Calothrix. Table 3 showed results of GAMs with the least Akaike information criterion values and the best fit
(greatest adjusted R? and cumulative explained deviation). Trichodesmium density explained (97%) more vari-
ations in the depth-integrated and surface NFRs than environmental parameters and Richelia/Calothrix density.
However, MLD, integration depth, salinity, and DRP contributed significantly (»p < 0.05) to depth-integrated
NFR variation and MLD contributed significantly (p < 0.05) to surface NFR variation.
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Figure 3. Surface densities and depth-integrated densities (DIDs) of Trichodesmium and diatom-diazotroph associations (DDAs; Richelia/Calothrix) in the ECSYS.
(a and e) free Trichodesmium; (b and f) colonial Trichodesmium; (c and g) total Trichodesmium; (d and h) total heterocysts; (i) surface densities in different regions;
(j) DIDs in different regions. Numbers on the bar plots indicate regional average values of surface densities and DIDs; lower-case letters on the bar plots indicate
significant (p < 0.05) difference in densities and DIDs among regions.
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Figure 4. Depth-integrated (pmol N m~2 d~!) and surface (nmol N L~! d~!) N, fixation rates (NFRs) in the ECSYS. (a) spatial distribution of depth-integrated NFR;
(b) spatial distribution of surface NFR; (c) depth-integrated NFRs among regions; (d) surface NFRs among regions. White circles indicate undetectable NFRs at
stations P1, P2, TS, and Z4; numbers on the bar plots indicate regional average values of depth-integrated and surface NFRs; lower-case letters on the bar plots indicate
significant (p < 0.05) difference in depth-integrated and surface NFRs among regions.

4. Discussion
4.1. Enhancement of N, Fixation by the Kuroshio Intrusion

The depth-integrated NFR was significantly (p < 0.05) higher in the ECS oceanic region (Kuroshio mainstream;
428.3 pmol N m~2 d~!) than in other regions of the ECS and in the SYS (Figure 4c). Zhang et al. (2012) also found
much higher NFR in the Kuroshio mainstream (221 pmol N m~2 d~!) than on the ECS shelf (21 pmol N m~2d~").
Figure 6 showed that surface and depth-integrated NFRs were significantly (p < 0.001) positively correlated with
densities of Trichodesmium and DDAs (Richelia/Calothrix). Shiozaki, Takeda, et al. (2015) found similar corre-
lation between NFR and Trichodesmium density in the Kuroshio and the neighboring ECS (near Japan). Because
the N, fixation efficiency of colonial trichomes of Trichodesmium was much higher than that of free trichomes
(Letelier & Karl, 1998; Saino & Hattori, 1982), the high density and colonial contribution of Trichodesmium in
the Kuroshio supported active N, fixation therein. Result of GAMs showed that spatial variation of NFRs was
overwhelmingly (97%) contributed by Trichodesmium density (Table 3). Apparently, spatial distribution of NFR
in the ECSYS was considerably determined by composition and density of filamentous diazotrophs.

The present NFRs in the ECS low-salinity (9.2 pmol N m~2 d~!) and upwelling (2.8 pmol N m~2 d~!) regions
(Figure 4c) were consistent with previous measurement (7.8 pmol N m~2 d~!) in the ECS low-salinity region
(Zhang et al., 2012). However, our NFR (11.2 pmol N m~2 d7!) in the SYS was much lower than previously
measured across the central part of the SYS (104 pmol N m~2 d~') by Zhang et al. (2012). Such inconsistence was
probably attributed to the different water masses and associated nutrient conditions in the SYS. The central part
of the SYS was controlled by deeper YS Cold Water and formed a strong thermocline, which prevented upwards
delivery of nutrients and resulted in depletion of NO,~ and extremely low NO,”/DRP (Figures 2e and 2g).
However, our measured stations were mainly situated in the southern part of the SYS where nutrient conditions

Table 2

Spearman's Correlation Coefficient (r) of NFRs and Surface Environmental Variables (Except MLD) in the ECSYS
Parameters Temperature ~ Salinity MLD Turbidity NO,~ DRP  NO,7/DRP Chl-a
Surface NFR 0.67*** 0.64%** Q. 71***  —Q.81*%**  —0.71*** —0.36% —0.67**%* —(0.83%**

Depth-integrated NFR ~ 0.74%* 0.70%#%  078%%% _08EHEE  —(.80%FF —(038% —075%kE (. 88HHk
Note. *p < 0.05; **p < 0.01; **%p < 0.001.
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Figure 5. Diagram of (a) depth-integrated N, fixation rate (NFR) (umol N m~2 d~!) and (b) surface NFR (nmol N L~! d~1)
versus temperature—salinity (water masses) in the ECSYS. Different surface water masses were determined by the salinity
and temperature properties (Chen, 2009; Lii et al., 2006; Su & Yuan, 2005). TWCW: Taiwan Warm Current Water; KSW:
Kuroshio Surface Water; SMW: Shelf Mixed Water. The biggest green circles with the numbers 550 and 15 placed in lower
left quarters indicate values of depth-integrated and surface NFRs, respectively.

(NO,~ repletion) were unfavorable for N, fixation because of extension of eutrophic CDW (Figure 2). Trichode-
smium density was considerably lower in the SYS than in the ECS (Figures 3i and 3j). Our investigation in 2011
found similar pattern (Jiang, Li, et al., 2018). Moreover, Richelia/Calothrix was undetectable in the SYS. We
speculated that unicellular cyanobacteria or noncyanobacteria diazotrophs (e.g., proteobacteria) might be respon-
sible for a major portion of N, fixation in the temperate SYS. Zhang, Song, et al. (2015) demonstrated that heter-
otrophic diazotrophs (Gammaproteobacteria) were dominant in the SYS using real-time PCR and clone library
analysis of nifH genes. Shiozaki, Nagata, et al. (2015) found high summer NFRs (up to 13.6 nmol N L' d~!) in
the temperate coastal region of Japan, largely contributed by unicellular cyanobacteria. These studies supported
our speculation.

The present NFR (89.8 pmol N m~2 d~!) in the ECS was higher than that previously reported (41 pmol N m=2d~")
by Zhang et al. (2012). Our station number of high NFR was much more than previously measured in oceanic (4
vs. 1) and mesohaline regions (12 vs. 7), which increased the present average NFR across the ECS. The present
surface NFR (8.33 + 4.25 nmol N L~! d~!) in the Kuroshio mainstream was slightly higher than those measured
previously using original N, bubble method (3.55 and 4.63 nmol N L~! d~, respectively; Shiozaki, Takeda,

Results of Generalized Additive Models Between NFRs (Surface and Depth-Integrated) and Environmental Variables and Densities (Surface and Depth-Integrated) of

Trichodesmium and DDAs in the ECSYS

NFR Variables Adjusted R? CED AIC
Depth-integrated NFR Trichodesmium™*** 0.965 96.8% 280.6
Trichodesmium™*** + MLD*** 0.989 99.1% 249.0
Trichodesmium™*** + MLD*** + D *%* 0.994 99.5% 230.6
Trichodesmium*** + MLD*** 4 [D*#* + DDAs** 0.996 99.7% 221.9
Trichodesmium™** + MLD*** 4+ ID*** + DDAs* + Salinity 0.996 99.8% 222.8
Trichodesmium*** + MLD** + ID** + DDAs + Salinity + Chl-a 0.996 99.8% 2223
Trichodesmium™*** + MLD*** 4 [D*** + DDAs + Salinity* + Chl-a + DRP* 0.997 99.8% 216.7
Surface NFR Trichodesmium™** 0.970 97.2% 57.1
Trichodesmium™** + MLD*#* 0.977 97.9% 47.5
Trichodesmium*** + MLD** 4+ Temperature 0.979 98.1% 45.1

Note. CED: cumulative explained deviation; AIC: Akaike information criterion. ID: integration depth. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 6. Regression between N, fixation rates (NFRs) and densities of Trichodesmium and Richelia/Calothrix in the ECSYS.

et al., 2015; Zhang et al., 2012) and acetylene reduction assay (4.12 nmol N L=! d~!; Wu et al., 2018). Also, this
rate was consistent with those (6—18 nmol N L~' d=!) measured in and near the Gulf Stream of the North Atlantic
subtropical gyre using modified >N, bubble method (Palter et al., 2020). However, our present depth-integrated
NFR in the Kuroshio mainstream (428 + 127 umol N m~2 d~!) was much higher than those previously measured
in the upstream Kuroshio (180.5 + 34.3 pmol N m~2 d~!; Chen et al., 2014) and the ECS Kuroshio mainstream
and adjacent waters near Japan (181-232 pmol N m~2 d~!; Shiozaki et al., 2010; Shiozaki, Takeda, et al., 2015)
during summer using original bubble method, which might be attributed to appreciably high densities of fila-
mentous diazotrophs during our investigation. These high surface and depth-integrated NFRs in the Kuroshio
mainstream were much lower than those (62 nmol N L' d=! and 753 pmol N m~2 d~!) measured around the
Miyako Islands in September 2009 when Trichodesmium bloomed with an extremely high density (>20,000
trichomes L~!; Shiozaki, Takeda, et al., 2015). The depth-integrated NFR in the ECS was also much higher
than those reported in the South China Sea (Chen et al., 2014; Voss et al., 2006; Wen et al., 2022; Zhang, Chen
et al., 2015), Philippine Sea (Shiozaki, Takeda, et al., 2015), and western and central North Pacific (Shiozaki
et al., 2010; Zhang et al., 2019), which have been characterized by low density of Trichodesmium under limi-
tation of Fe or P (Sohm et al., 2011; Tanita et al., 2021). Table 3 showed that DRP contributed significantly
(p < 0.05) to depth-integrated NFR variation in the ECSYS, indicating important regulation of DRP on N, fixa-
tion. Although NFRs in the entire ECS coincided with those reported in most seas worldwide (Luo et al., 2012;
Tang et al., 2019), our data measured in the Kuroshio mainstream was relatively high.

In addition to filamentous diazotrophs, water mass variation associated temperature, salinity, nutrients, and light
profoundly influenced N, fixation in the ECSYS. The NFRs in the N-depleted, clear, warm, saline Kuroshio and
TWC water were considerably higher than those in the N-replete, turbid, cold or fresh CDW, YS Cold Water, and
Shelf Mixed Water (Figure 5). Table 2 affirmed that the NFR was significantly (p < 0.001) positively correlated
with temperature and salinity but was negatively with NO,~, NO,7/DRP, and turbidity. Laboratory experiments
showed that salinity and temperature for optimal growth and N, fixation of Trichodesmium ranged from 33 to
37 (Fu & Bell, 2003) and 24-30°C (Breitbarth et al., 2007). As described previously, warm and saline environ-
ments in the ECS were favored by Trichodesmium and Richelia/Calothrix (Jiang et al., 2019). Our results clearly
revealed relatively depleted NO,~ but replete DRP associated with the intrusion path of nearshore Kuroshio
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Branch Current from the northeast of Taiwan to the Zhejiang coastal waters (Figure 2f), being highly consistent
with active N, fixation therein (Figure 4). The dFe concentration measured simultaneously in the ECS Kuroshio
mainstream (0.8 nmol L~'; Zhang et al., 2022) was much higher than those in the upstream Kuroshio of the
Luzon Strait (0.25 nmol L~'; Wen et al., 2022) and east of Taiwan (<0.4 nmol L~'; Sato et al., 2021), because of
large inputs of trace elements from rivers, atmospheric deposition, Taiwan Strait Water, and Kuroshio intrusion
(Guo et al., 2014; Zhang et al., 2022). Therefore, high temperature, deficient N, extremely low NO,7/DRP, and
abundant dFe were conducive to N, fixation in oceanic and mesohaline waters of the ECS influenced by the
Kuroshio. It is well recognized that bioavailable Fe and P are limited N, fixation in most oceanic warm regions
(Mills et al., 2004; Sohm et al., 2011; Tanita et al., 2021). The relatively high concentrations of dFe and DRP may
be the crucial factors for active N, fixation in the ECS Kuroshio mainstream where was thought to be hotspot of
N, fixation worldwide (Shiozaki et al., 2010; Shiozaki, Takeda, et al., 2015).

Previous studies have indicated that abundant Trichodesmium and Richelia/Calothrix are transported by the
intrusions of Kuroshio and TWC into the ECSYS (Cheung et al., 2019; Jiang et al., 2019; Jiang, Li, et al., 2018;
Marumo & Asaoka, 1974; Shiozaki, Takeda, et al., 2015). Moreover, suitable physicochemical properties (nutri-
ents, temperature, and light penetration) in the Kuroshio mainstream and affected waters promote growth of diaz-
otrophs (particularly Trichodesmium) and consequent N, fixation in the offshore ECS (Jiang et al., 2019; Jiang,
Li, et al., 2018; Zhang et al., 2012). Figures 3 and 4 confirmed shoreward and northward decreasing trends of
filamentous diazotrophic density and NFR from the Kuroshio to the ECS coast and SYS. These findings suggested
great enhancement of N, fixation by the Kuroshio intrusion in the ECSYS. Lu et al. (2019) also found that the
transportation of Trichodesmium by the Kuroshio intrusion significantly increased Trichodesmium density and
NFR in the northern South China Sea. Similar results were observed in other western boundary currents, including
the Gulf Stream (Palter et al., 2020), East Australian Current (Armbrecht et al., 2015), and Brazil Current (Detoni
etal., 2016). Furthermore, extremely high NFRs were detected in the waters (near the mainland) of western tropical
South (570 pmol N m~2 d~! on average with the highest up to 3,000 pmol N m~2d~!; Bonnet et al., 2017) and North
(521 pmol N m~2 d~!; Wen et al., 2022) Pacific, which originated from the South and North Equatorial Current,
respectively. These regions appeared to provide optimal physicochemical conditions (particularly P and dFe) for
transported diazotrophs (e.g., Trichodesmium) to bloom and N, fixation (Bonnet et al., 2017; Detoni et al., 2016;
Jiang, Li, et al., 2018; Palter et al., 2020; Shiozaki, Takeda, et al., 2015). Therefore, we infer that the intrusion of
western boundary currents (originated from equatorial currents) into marginal seas fuels regional N, fixation.

Our result revealed slightly higher NFR on the surface than at the 10% light depth (~5—45 m with 100-250 pmol
quanta m~2 s~!). This result was highly supported by the abundant filamentous diazotrophs in upper 45 m
(Jiang et al., 2019) as well as their high adaptability to this relatively low light environment (Lu et al., 2018;
Villareal, 1990). Previous studies also showed relatively low variability in NFRs throughout the euphotic zone,
except for 1% of the surface irradiance, such as the ECS (Zhang et al., 2012) and Northwestern Atlantic Ocean
(Capone et al., 2005). Additionally, unicellular diazotrophs fixed N, under low light and even night (Chen
et al., 2014; Zehr et al., 2001), which smoothed this difference of NFR between light depths.

4.2. Influences of Large River Plume and Upwelling on N, Fixation

The CDW, dominates the northern ECS and the southern part of the SYS during summer, delivers a large amount
of freshwater and associated macro- and micro-nutrients from the Changjiang. The low-salinity (<31) and
N-replete (high NO,7/DRP) conditions therein fueled nondiazotrophic phytoplankton growth but depressed fila-
mentous diazotrophs and N, fixation (Figures 2—4). Table 2 showed that NFRs were significantly (p < 0.01) posi-
tively correlated with salinity but was negatively with NO,~, NO,7/DRP, and Chl-a. This result disagreed with
previous studies in the plumes of Amazon (Subramaniam et al., 2008) and Mekong Rivers (Voss et al., 2006),
which found abundant filamentous diazotrophs and active N, fixation. Particularly DDAs, were benefited from
the nutrient environment (depleted N, available P and silicate, and abundant dFe) of the Amazon River plume
(Carpenter et al., 1999; Subramaniam et al., 2008). We inferred that the differences of nutrient conditions and
diazotrophic composition in plumes of Changjiang (higher N:P ratio, depleted silicate, and lower densities of
DDAs and Trichodesmium) and Amazon River (lower N:P ratio, abundant silicate, and higher densities of DDAs
and Trichodesmium) were the main reason.

Under the prevailing southwestern monsoon, the shoreward and northward intrusions of saline, cold deeper
TWC and nearshore Kuroshio Branch Current onto the ECS shelf increased significantly during summer (Yang
et al., 2012, 2018; Zhou et al., 2015), resulting in strong upwelling in the Zhejiang coastal waters and Changjiang
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Estuary because of tidal mixing, topography, and winds (Lii et al., 2006). In this study, high salinity (>31-32;
Figure 2a) and low temperature (<26—27°C; Figure 2b) were observed along the ECS coast and in the Changjiang
Estuary. Moreover, this upwelling most likely mixed with eutrophic CDW and coastal water, resulting in low
temperature (23.9 + 1.8°C), abundant NO,~ (12.61 + 8.67 pmol L~1), and high NO,~/DRP ratio (21.9 + 16.9)
on the surface (Table 1). Such an environment stimulated nondiazotrophic phytoplankton blooms (with Chl-a
concentration at 6.34 + 7.56 mg m~?) but restrained growth of filamentous diazotrophs (Figure 3) and N, fixation
(Figure 4). This finding was consistent with those reported in upwelling waters off Vietnam (Voss et al., 2006)
and Hainan Island (Zhang, Chen et al., 2015) in the South China Sea, although higher NFRs occurred in border-
ing between coastal upwelled and offshore waters. However, our result differed from those reported in upwelling
systems of the eastern equatorial Atlantic (Subramaniam et al., 2013) and off Pingtan in the Taiwan Strait (Wen
et al., 2017). Subramaniam et al. (2013) hypothesized that upwelled low N:P ratio water and reduced N (because
of initial bloom of nondiazotrophic phytoplankton) resulted in active N, fixation that fueled by residual P and a
combination of aeolian and upwelled Fe. Wen et al. (2017) observed much higher surface NFR in upwelling region
off Pingtan (up to 7.5 nmol N L' d~! with low N:P ratio of 1.0-10.4) than off Dongshan (<1.9 nmol N L' d~!
with high N:P ratio up to 43 due to influence of the Pearl River plume) in the Taiwan Strait, which was highly
attributed to N:P ratio. This observation supported our finding of extreme low NFR in the ECS coastal upwelling
waters where was characterized by abundant NO,~ and high NO,~/DRP ratio of 21.9 due to influence of the CDW
and coastal water. The response mechanisms of diazotrophs and N, fixation to dynamic upwelling events are not
uniform across coastal upwelling systems characterized by different physical and biogeochemical conditions,
which warrants further study.

4.3. Biogeochemical Importance of Filamentous Diazotrophs and N, Fixation

The present study did not directly measure the contribution of filamentous and unicellular diazotrophs to the bulk
NFR in the ECSYS using size-fractionated "N, tracer assay. However, we estimated that the NFRs of Trichode-
smium and Richelia/Calothrix in the ECS were at 48.3 and 9.4 pmol N m~2 d~!, respectively, based on their DIDs
in the euphotic zone (Jiang et al., 2019). This estimation adopted the summer NFRs of colonial Trichodesmium
(7.9 pmol N trichome~! d~!) measured in the ECS Kuroshio (Wu et al., 2018) and of Richelia/Calothrix (1.04,
0.55, and 0.51 pmol N heterocyst~! hr~! for Rhizosolenia, Hemiaulus, and Chaetoceros, respectively) in the North
Pacific (29.8°N, 149.3°E, near the Kuroshio Extension; Kitajima et al., 2009). Our assumption of the NFR of free
trichomes (2.63 pmol N trichome~! d~!) was lower than those reported in the ECS (5.6 pmol N trichome™' d~!;
Chang et al., 2000) and the western North Pacific (16.1 pmol N trichome~! d'; 32.0°N, 155.0°E) (Kitajima
et al., 2009). Therefore, the present estimated NFR of Trichodesmium was quite conservatively. According to our
measured NFR, the contribution of filamentous diazotrophs to N, fixation in the ECS was estimated to be 64%.
Particularly in oceanic region, their contribution might frequently exceed 90% because of extremely abundant
Trichodesmium (Jiang, Li, et al., 2018; Marumo & Asaoka, 1974; Shiozaki Takeda et al., 2015). This contribution
in the ECS was comparable with that (59.1%) measured in the upstream Kuroshio but higher than that (39.5%)
measured in the South China Sea during summer using a size-fractionated method (Chen et al., 2014). Because
our estimation of Trichodesmium NFR was quite conservative, the actual NFR and contribution of filamentous
diazotrophs might be much higher than these values. Regardless, our results showed a crucial role of filamentous
diazotrophs in N, fixation in the ECS.

Summer Trichodesmium densities, both in the ECS and SYS, have evidently increased since the 1970s under
increased temperature and enhanced northerly transport of the nearshore Kuroshio Branch Current (Jiang
et al., 2017; Jiang, Li, et al., 2018), although the present density (4.6 + 7.0 x 103 trichomes m~2) of Trichode-
smium in the SYS was lower than that (30 + 53 x 103 trichomes m~2) observed previously in summer 2011 (Jiang,
Li, et al., 2018). The present stronger upwelling and CDW and associated abundant NO,~ in the southern part of
the SYS were largely responsible for this contradiction. Furthermore, the distribution boundary of Trichodesmium
shifted northward in the ECSYS and high density (up to 5 X 10° trichomes m~2) was found in the southern part of
the SYS near the Changjiang Estuary in autumn with surface temperature of ~22°C (Jiang, Li, et al., 2018). With
increasing surface temperature and stratification, oligotrophic subtropical conditions were expected to extend
to higher latitudes (Polovina et al., 2008). Correspondingly, Trichodesmium had the potential to shift poleward,
resulting in increases of growth rate and NFR in subtropical waters within 30°C (Breitbarth et al., 2007). Labora-
tory experiments found that growth rate and NFR of Trichodesmium enhanced significantly under elevated pCO,
(Hutchins et al., 2015). We speculated that contribution of Trichodesmium to N, fixation in the subtropical ECS
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and temperate SYS (N-limited in the central part because of strong thermocline) likely to be enhanced in warmer,
more acidified environment.

As mentioned before, spatial pattern of NFR in the ECS was highly associated with the saline, oligotrophic
Kuroshio intrusion. We divided the ECS into three regions, including oceanic (surface salinity >34), mesohaline
(31 < surface salinity <34), and coastal regions (surface salinity <31; including upwelling). Then we calcu-
lated the areas of oceanic (207.13 x 103 km?), mesohaline (293.09 x 103 km?), and coastal (194.37 x 103 km?)
regions according to the salinity distribution (Figure 2a). Based on the present average NFRs (428.3, 47.8, and
4.7 pmol N m~2 d-!, respectively) across oceanic, mesohaline, and coastal regions (Figure 4¢), summer (June—
August) N, fixation in the entire ECS (excluding the Taiwan Strait) was estimated to be approximately 0.13 Tg N.
This flux was overwhelmingly contributed (85.6%) by the oceanic region, while the mesohaline and coastal
regions accounted for 13.5% and 0.9%, respectively. Previous study in the Trichodesmium-dominant section
23°W (15°N-5°S) of the Atlantic Ocean suggested that average depth-integrated NFR was 62% higher with the
dissolution method than with the original bubble method (Grof3kopf et al., 2012). If we accept this correction
coefficient, the estimated N, fixation was 0.22 Tg N. This estimation of pelagic fixed N was accounted for >40%
of the summer (June-August) NO;~ flux (0.49 Tg N) from Changjiang calculated through monthly river inflow
and NO,~ concentration (see data set) at station Datong during 2017-2019. The summer N, fixation flux was
accounted for 13% of the annual dissolved inorganic N flux (115 X 10° mol) of Changjiang estimated using
nutrient data from the river mouth during 2004-2015 (Zhang et al., 2020). Additionally, the present NFRs in
the ECS oceanic and mesohaline regions were comparable with vertical turbulent NO,~ fluxes in the Kuroshio
mainstream (445 pmol N m~2 d~!) and outer shelf (82 pmol N m~2d~!) of the ECS, respectively (Liu et al., 2013),
indicating that N, fixation was a major new N source in the ECS open waters. Therefore, our study suggested that
N, fixation is an important external source of N budget in the ECS.

New production across the ECS during summer 2011 was 9.8 + 6.4 (n = 9) mmol C m~2 d~! measured using >N
(K'®NO,) tracing method (see data set). Assuming that the NFR was converted to C fixation using a C:N ratio
at 6.6 (Redfield, 1958), diazotrophs roughly contributed 6.1% to new production across the ECS. However, the
contribution was up to 55.8% in the Kuroshio mainstream. This contribution was higher than those estimated
in the upstream Kuroshio (16%; Chen et al., 2008) and the ECS outer shelf (17%) and Kuroshio (10%; Liu
et al., 2013) but lower than in south of the Ryukyu Island Chain (82%; Liu et al., 2013). Our result suggested
that N, fixation played an important role in C fixation in the ECS, particularly in the Kuroshio, which enhanced
sequestration of CO, (Falkowski, 1997; Subramaniam et al., 2008). We inferred that the contribution of Richelia/
Calothrix to new production was lower than that of Trichodesmium in the ECS because of their varying standing
crop and estimated NFR. Nevertheless, Richelia/Calothrix with heavy, silicon-containing cell walls might fuel
more efficient CO, sequestration and enhance efficiency of the biological C pump in the Kuroshio. Sediment
trap data confirmed that N, fixation by DDAs contributed significantly to particulate C sink in the North Pacific
subtropical gyre (Karl et al., 2012), tropical North Atlantic (Subramaniam et al., 2008), and Gulf of California
(White et al., 2013). These results warrant further study on new production and C sequestration sustained by
filamentous diazotrophs in the Kuroshio and affected waters.

5. Conclusions

We found active N, fixation in oceanic and mesohaline waters of the ECS influenced by the Kuroshio, which
was significantly contributed by filamentous diazotrophs (Trichodesmium and Richelia/Calothrix). These results
confirmed our hypothesis that the intrusion of Kuroshio greatly enhanced N, fixation in the ECSYS. Based on the
present finding in the Kuroshio and recent evidence in the Gulf Stream (Palter et al., 2020), Brazil Current (Detoni
et al., 2016, 2022) and East Australian Current (Armbrecht et al., 2015), we infer that the intrusion of western
boundary currents into marginal seas fuels regional N, fixation. Our study provided high spatial resolution data
sets of NFR in the ECSYS during summer, which would be useful for understanding N and C biogeochemical
process, although the present use of original bubble method might underestimate the NFR. We estimated the
contribution of filamentous diazotrophs to N, fixation based on reported NFR per trichome or heterocyst, further
study on size-fractionated NFR using >N, dissolution method or modified bubble method needs to be performed
to more accurately calculate their contribution and regional budget of N, fixation. Moreover, our study highlights
an appreciable contribution of summer N, fixation to N budget in the ECS, which warrants further direct meas-
urement of NFRs in different seasons.
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Acronyms

C carbon

CDW Changjiang Diluted Water
Chl-a chlorophyll a

DDA diatom-diazotroph associations
DID depth-integrated density

dFe dissolved iron

ECS East China Sea

ECSYS East China Sea and southern Yellow Sea
MLD mixed layer depth

NFR N, fixation rate

N nitrogen

P phosphorus

SYS southern Yellow Sea

TWC Taiwan Warm Current
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