
1.  Introduction
Since the beginning of the twentieth century, the global ocean has undergone unprecedented changes caused by 
global warming (Gillett et al., 2021; Stocker et al., 2013). These changes are notably pronounced in the Arctic 
region due to polar amplification with major consequences for sea-ice cover and the thermohaline circulation 
(Cavalieri et al., 1997; Shindell & Faluvegi, 2009). The Arctic Ocean and its marginal seas are characterized by 
large seasonal sea-ice changes. Melting in summer and sea-ice formation in winter, including coastal polynyas, 
through the production of cold and saline waters, alter deep-water formation and subsequently the Arctic Ocean 
circulation (Arrigo, 2014; Cai et al., 2010; Overland & Wang, 2013; Xiao et al., 2013). At the current rate of 
decline (0.42% year−1), the Arctic Ocean may be ice-free in summer season in the next 50 or even 30 years 
(Comiso, 2012; Wang et al., 2019), which will profoundly impact the global climate and carbon cycle and further 
accelerate global warming causing damages to the polar ecosystems (Moline et al., 2008). In Arctic marginal 
seas changes in sea-ice cover and thickness involve different thermodynamic and dynamic factors (Polyakov 
et al., 2003). In the case of the East Siberian Sea (ESS), land run-off and atmospheric circulation are controlling 
factors of the sea-ice distribution (Park et al., 2020; Rigor & Wallace, 2004).

Our knowledge on natural variability of Arctic sea ice and on-going changes are limited by the lack of long 
time series observations. Information on past sea-ice distribution can be obtained from micropaleontological 
fossils (Cronin et al., 2013; de Vernal et al., 2020; Nair et al., 2019), geochemical indexes (Hillaire-Marcel & de 
Vernal, 2008) or biomarker proxies such as IP25 (Ice Proxy with 25 carbon atoms), a mono-unsaturated highly 
branched isoprenoid (HBI) produced by sea-ice diatoms (Belt et al., 2007). Although known modern producers 
of IP25 only account for ∼3.6% of the total diatoms living in the Arctic (Brown et al., 2014), a significant pos-
itive correlation between sea-ice diatoms and sympagic IP25 has been found in the sediment trap data from the 
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western Arctic Ocean (Fahl & Nöthig, 2007; Ren et al., 2020; Zernova et al., 2000). Since the first IP25-based 
sea-ice reconstruction of Massé et al. (2008) off North Iceland, the PIP25 (Phytoplankton-IP25) index combining 
IP25 with phytoplankton markers (brassicasterol or dinosterol) has been proposed to derive semi-quantitative 
estimates of sea ice (Müller et al., 2011). More recently, the substitution of sterols by the tri-unsaturated HBI 
alkene (HBI-III) in the PIP25 index has been proposed to better reflect ice-free pelagic phytoplankton than sterols 
(Bai et al., 2019; Koch et al., 2020; Smik, Cabedo-Sanz, & Belt, 2016). Numerous studies have been carried out 
to produce past sea-ice reconstructions (for reviews and further references see Belt, 2018; Belt & Müller, 2013; 
Stein et al., 2012) including in the Arctic Ocean (Belt, 2018; Belt & Müller, 2013; Stein et al., 2016, 2017; Xiao, 
Stein, & Fahl, 2015). The applicability of HBIs and sterols in the pan-Arctic surface sediments for assessing 
(paleo) sea ice has also been discussed (Kolling et al., 2020; Stoynova et al., 2013; Xiao, Fahl, et al., 2015). Yet, 
the production, export and preservation of HBIs are still poorly documented and require further investigations to 
achieve robust sea-ice reconstructions. In this regard, although the influence of continental run-off on the HBIs 
and phytosterol production and its impact on PIP25 values has been initially discussed in Hörner et al. (2016) and 
Xiao et al. (2013), uncertainties remain due to the lack of observations. This study presents a mapping of HBIs 
and sterol concentrations in 42 surface sediments from the ESS and adjacent West-Chukchi Sea (thereafter West-
CS; see Figure 1) and assess existing proxies of seasonal sea ice under high continental run-off.

2.  Regional Settings
The ESS is one of the heaviest sea ice covered marginal seas of the Eurasian continent. It is largely influenced 
by both Eurasian rivers run-off and the Arctic Oscillation (AO) which in turn modulate the ocean circulation 
over most of the basin (Dukhovskoy et al., 2006; Thompson & Wallace, 1998). The water circulation in the ESS 
consists of the Siberian Coastal Current (SCC) that runs alongshore from west to east, the Pacific Water Inflow 
(PWI) through the Bering Strait (BS) and the discharge of two large rivers, the Indigirka River (IR) and the 
Kolyma River (KR; Münchow et al., 1999; Figure 1). Originated from the Laptev Sea (LS) through the Dmitry 
Laptev Strait, the SCC flows eastwards into the ESS and mixes on its path with Siberian river freshwaters and 
sea-ice melt waters. Forced by winds, the SCC continues and crosses the Long Strait before dissipating in the 
CS (Weingartner et al., 1999). When entering the Arctic Ocean, the PWI splits into three branches: the western 
branch Anadyr Water (AW, high salinity and high-nutrient), the middle branch Bering Shelf Water (BSW, medi-
um salinity), and the eastern branch Alaskan Coastal Water (ACW, low salinity and low-nutrient; Coachman & 
Aagaard, 1966; Grebmeier et al., 2006; Woodgate et al., 2005; Figure 1).

AO is a key feature of the Arctic region climate. High AO favors a cyclonic circulation in the Russian Arctic 
diverting eastward the freshwater delivered by Eurasian rivers off the shelf (Morison et al., 2012). The IR and the 
KR, with an annual run-off of 61 and 132 km3 year−1, respectively (Gordeev et al., 1996), are important sources of 
terrigenous material into the ESS (Bröder et al., 2019). To the west, the Lena River (LR), with a water discharge 
of 588 km3 year−1 represents the largest fresh water volume to the LS and the ESS (Holmes et al., 2011). These 
freshwater inputs affect processes such as freezing, sea-ice formation, melting and transport of sea ice (Aagaard 
& Carmack, 1989) and thus the distribution of coastal sea ice (Divine et al., 2004; Haine et al., 2015).

Sea ice in the ESS exhibits strong seasonal and interannual variability (Parkinson et al., 1999; Wang et al., 2019). 
The ESS is entirely frozen from November to April. In May, sea ice around the northern New Siberian Islands 
begins melting under the influence of winds. In June, inshore sea ice starts thawing and declining. Open water 
conditions generally establish earlier in the West than in the East-ESS. Sea ice begins freezing in October at a 
higher freezing rate in the West-ESS. Summer sea-ice coverage in the Arctic Ocean has been decreasing signifi-
cantly in the past decades leading to ESS evolving from a largely ice-covered area to an area now largely ice-free 
(Wang et al., 2019).

Sea-ice motion in ESS is affected by wind patterns generally following the wind direction (Morris et al., 1999). 
On the shallow Siberian continental shelf, the persistent sea breeze in winter causes the formation of polynya or 
channels at the boundary between land-fast ice and pack ice (Zhang et al., 2021) such as the Great Siberian Pol-
ynya that has long existed between the eastern LS and the New Siberian Islands (Bareiss & Gӧrgen, 2005; Speer 
et al., 2017; Zonn et al., 2016).
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3.  Material and Methods
3.1.  Sediment Sampling

A total of 42 surface sediment samples (0–2 cm) were retrieved from the ESS during the Cruise LV77 aboard the 
R/V Akademik M.A. Lavrentiev (Figure 1). The samples were collected using a box-corer and quickly stored at 
−20°C after recovery. They were freeze-dried prior biomarker analyses in the Key Laboratory of Marine Ecosys-
tem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources (Hangzhou, China).

3.2.  Total Organic Carbon (TOC) and Total Nitrogen (TN) Analyses

The TOC and TN were analyzed at the Ocean College, Zhejiang University. For these bulk analyses, samples 
were also freeze-dried and homogenized. Approximately 1 g of sediment was acidified with 1 mol L−1 HCl and 
left at 50°C for at least 48 hr to remove carbonates. Samples were then washed with ultra-pure water to pH = 7 
and then freeze-dried (Williford et al., 2007). Samples were analyzed with an element analyzer (FLASH 2000 
CHNS-O, Thermo Fisher) for TOC and TN determination. Reference samples BBOT Thermo were used for 
quality control. The standard deviation of the measurements is less than <0.1%.

Figure 1.  (a) Map of the western Arctic Ocean showing surface ocean circulation (blue arrows) and sampling locations (black dots and gray dots). The stations in 
gray feature a strong influence of rivers. The black number represents the serial number of the station (see Table S1 in Supporting Information S1 for details). Main 
study regions: ESS, East Siberian Sea; CS, Chukchi Sea; LS, Laptev Sea (see Figure S1 in Supporting Information S2 for details). The dotted and dashed lines in white 
represent the 20% isolines of September sea-ice concentration for the period 1990–1999 and 2007–2016, respectively. Typical surface circulation: SCC, Siberian coastal 
current; PWI, Pacific water inflow (ACW-Alaskan Coastal Water; AW-Anadyr Water; BSW-Bering Shelf Water). Rivers are shown in green lines: LR, Lena River; IR, 
Indigirka River; KR, Kolyma River. (b) The satellite average Summer Sea-Ice concentration (SuSIC) from 1996 to 2015 obtained from NSIDC (https://nsidc.org). The 
distribution of mean Summer Sea Surface Salinity (SuSSS) and Summer Sea Surface Temperature (SuSST) from 1955 to 2012 are shown in (c) and (d), respectively. 
The SuSSS and SuSST data were obtained from Locarnini et al. (2013) and Zweng et al. (2013), respectively.
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3.3.  Biomarker Analyses

Lipids were extracted from the freeze-dried sediments using a mixture of dichloromethane/methanol (2:1 v/v) 
for 10 min in an ultrasonic bath, then centrifuged for 2 min at 2,500 rpm. The supernatant containing the lipids 
was then retrieved with a clean glass pipette and placed in a clean glass vial. This step was repeated twice, the 
three extracts were combined and dried under a gentle nitrogen stream. Hydrocarbons, alkenones and sterols were 
further separated from the total lipid extract using 2.5 ml n-hexane, 4 ml n-hexane/ethyl acetate (90:10 v/v) and 
4 ml n-hexane/ethyl acetate (70:30 v/v), respectively, using silica gel as stationary phase (Sicre et al., 2001). After 
separation, 50 μl BSTFA (bis-trimethylsilyl-trifluoroacetamide) were added to the sterol fraction and heated at 
70°C for 1 hr to complete derivatization. Both C25-HBIs (IP25, HBI-II, HBI-III and HBI-IV, a geometric isomer 
of HBI-III) and sterols were analyzed by gas chromatography (GC, Agilent Technologies 7890) coupled to mass 
spectrometry (MS, Agilent 262 Technologies 5975C inert XL; Belt et al., 2007; Müller et al., 2011). GC/MS anal-
yses were carried out on a 30 m HP-5MS column (0.25 mm i.d., 0.25 μm film thickness). The oven temperature 
was programmed from 40°C to 300°C at a heating rate of 10°C min−1 and maintained at final temperature for 
10 min. The operating conditions of MS were as follows: ion source temperature at 250°C and ionization energy 
at 70 eV. Individual compounds were identified based on their retention time with reference compounds and their 
mass spectra. For quantification of HBIs (m/z 350 for IP25, m/z 348 for HBI-II, and m/z 346 for HBI-III and HBI-
IV), 7-hexylnonadecane (m/z 266) was used as an internal standard and added to the sample prior extraction while 
cholesterol-d6 (cholest-5-en-3β-ol-D6, m/z 464) was used as an external standard and added prior injection to 
calculate sterol concentrations. The molecular ions m/z 470, m/z 500, m/z 396, and m/z 382 were used to quanti-
fy the sterols, brassicasterol (24-methylcholesta-5,22E-dien-3β-ol), dinosterol (4α,23,24R-trimethyl-5α-cholest-
22E-en-3β-ol), 24-ethylcholest-5-en-3-ol and campesterol (24-methylcholest-5-en-3β-ol), respectively. It should 
be noted that both the α and β isomers of the 24-ethylcholest-5-en-3-ol co-exist in marine sediments. However, 
the β isomer (24-ethylcholest-5-en-3β-ol) named β-sitosterol of terrigenous origin is found in high abundances in 
coastal settings except for coastal upwelling areas where the α isomer can prevail due to high productivity (Volk-
man, 1986). Diatoms can produce β-sitosterol, though in minor amounts, as opposed to cyanobacteria as reported 
in cyanobacterial mats (Boon et al., 1983). We assume that 24-ethylcholest-5-en-3-ol is primarity β-sitosterol in 
our samples (see discussion). All concentrations of biomarkers were then normalized to TOC.

3.4.  Calculation of the PIP25 Index

Semi-quantitative estimates of sea ice were calculated using the PIP25 index that combines sympagic IP25 and 
pelagic phytoplankton biomarker (P) in the following expression (Müller et al., 2011):

PIP25 =
[IP25]

[IP25] + [phytoplankton biomarker] ∗ 𝑐𝑐
�

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 c =
mean IP25 concentration

mean phytoplankton biomarker concentration
�

Brassicasterol, dinosterol and HBI-III were used as a reference for pelagic phytoplankton to derive PBIP25, PDIP25 
and PIIIIP25 indexes, respectively. The c value represents the ratio of the mean concentration of IP25 over the mean 
concentration of the selected phytoplankton biomarker of all samples, or the subset after ruling out estuarine 
samples (salinity <25). Since the abundances of IP25 and HBI-III were of similar magnitude in our data set, the 
PIIIIP25 index was also calculated for c = 1.

3.5.  Oceanographic Data

The satellite sea-ice concentration (SIC) data were obtained from the Nimbus-7 SMMR and DMSP SSM/I-SS-
MIS passive microwave data of the National Snow and Ice Data Center (NSIDC, https://nsidc.org). Here, we 
selected the average SIC from 1996 to 2015 to generate SIC for spring (Sp; April, May, and June) and summer 
(Su; July, August, and September) and the 20% isolines of September SIC shown in Figure 1.

Based on the range of sedimentation rate in most of the study area (1.1–1.6 mm year−1; Bröder et al., 2016; Vonk 
et al., 2012), the top 2 cm of the surface sediments represent between ∼20 and ∼30 years. During this period, the 
Arctic sea ice experienced relatively stable icy years in 1990–1999 followed by a decade of significant sea-ice 

https://nsidc.org
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retreat in 2007–2016 (NSIDC, https://nsidc.org). These two situations are shown in Figure 1 by the average sum-
mer minimum sea ice (20% of SIC) from 1990 to 1999 and from 2007 to 2016, respectively.

The chlorophyll a data were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) on 
the Aqua satellite, using the GlobColour processing results (https://hermes.acri.fr/). The May to September mean 
value of chlorophyll a from 1998 to 2016 was used. Summer sea surface salinity (SuSSS) and temperature 
(SuSST) data are from World Ocean Atlas 2013 (WOA13, https://www.nodc.noaa.gov/OC5/woa13/) with 0.25° 
grid. A map showing the different regions and their acronyms used in the discussion is provided in Figure S1 in 
Supporting Information S2.

4.  Results
4.1.  Total Organic Carbon (TOC) and Total Nitrogen (TN)

The values of TOC and TN in the ESS span from 0.2% to 2.1% and from 0.03% to 0.22%, respectively (Figures 2a 
and 2b; Table S1 in Supporting Information S1). Maximum TOC values of 1.7%–2.1% are found in the East-ESS/
West-CS, while lowest ones (<0.5%) occur off the KR mouth and highest latitudes. The spatial distribution of TN 
values shares strong resemblance with TOC (Table S1 in Supporting Information S1).

4.2.  Sterols

Brassicasterol shows high values in the central ESS (141–191 μg g−1 TOC, Table S1 in Supporting Informa-
tion S1, Figure 3a), while dinosterol is generally low across the basin except for high values east of Wrangel 
Island under the influence of AW (9–14 μg g−1 TOC; Table S1 in Supporting Information S1, Figure 3b). Terres-
trial campesterol and β-sitosterol both show extremely low values in the northernmost area as for brassicasterol 

Figure 2.  Distribution of (a) TOC, (b) TN and (c) TOC/TN in the surface sediments of ESS and CS. (d) Map showing the average chlorophyll a in May-September 
(1998–2016) in the ESS (GlobColour, https://hermes.acri.fr/). Isolines of September 20% sea-ice concentration for the period 1990–1999 and 2007–2016 are presented 
in white dotted and dashed lines, respectively (NSIDC, https://nsidc.org).

https://nsidc.org
https://hermes.acri.fr/
https://www.nodc.noaa.gov/OC5/woa13/
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and dinosterol. However, campesterol and β-sitosterol strongly differ along the shelf suggesting different sources 
(Figures 3c and 3d).

4.3.  C25 Highly Branched Isoprenoid (HBI) Alkenes

The distribution patterns of sympagic IP25 and HBI-II are generally similar, with high values in the central ESS 
and near the New Siberian Islands (IP25: 1.7–2.4 μg g−1 TOC; HBI-II: 1.7–2.7 μg g−1 TOC, Table S1 in Sup-
porting Information S1 and Figures 4a and 4b). Values decrease from the central region to nearshore sediments 
(IP25: 0.2–0.7 μg g−1 TOC; HBI-II: 0.1–0.4 μg g−1 TOC, Table S1 in Supporting Information S1) and reach a 
minimum at high latitudes (IP25: 0.06–0.4 μg g−1 TOC; HBI-II: 0.08–0.5 μg g−1 TOC, Table S1 in Supporting 
Information S1). IP25 and HBI-II are also low in the West-CS.

HBI-III and HBI-IV show very similar patterns with a maximum south and east of Wrangel Island that strik-
ingly contrast with the sympagic HBIs (0.11–1.68 μg g−1 TOC; Figures 4a and 4b). Intermediate values occur 
in the central ESS (1.8–2.7 μg g−1 TOC) while lowest ones are found in coastal waters and at highest latitudes 
(Figures 4c and 4d). The HBI-IV sediment content is generally <2 μg g−1 TOC (Figures 4c and 4d, Table S1 in 
Supporting Information S1) except for south and east Wrangel Island (Figures 4c and 4d, 6.8–8.5 μg g−1 TOC, 
Table S1 in Supporting Information S1), as also found for HBI-III.

5.  Discussion
5.1.  Organic Carbon Sources

TOC in the ESS coastal surface sediments results from mixed inputs of marine primary production and terrig-
enous sources (Vonk et al., 2012). n-Alkanes in sediments indicate a gradually decrease of terrestrial organic 
carbon from south to north, along a transect from the IR estuary to offshore (Petrova et al., 2004). Similar trends 

Figure 3.  Concentrations (μg g−1 TOC) of phytoplankton biomarkers: (a) brassicasterol and (b) dinosterol; terrigenous biomarkers: (c) campesterol and (d) β-sitosterol 
in the surface sediments of ESS and CS. Isolines of September 20% sea-ice concentration of for the period 1990–1999 and 2007–2016 are presented in white dotted and 
dashed lines, respectively (NSIDC, https://nsidc.org).
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are observed in the C/N ratios (Figure 2c) and terrestrial sterols (Figure 3). In the outer East-ESS and West 
Wrangle Island, the prevailing source of TOC is generally marine as indicated by C/N ratio <8 (Figure 2c), high 
dinosterol (>5 μg g−1 TOC, Figure 3b) and brassicasterol concentrations (>100 μg g−1 TOC, Figure 3a). This re-
sult is consistent with warm and nutrient-rich PWI flowing into the CS through the Bering Strait sustaining high 
primary production and export in the East-ESS and West-CS, leading to organic rich sediments till around 170°E 
(Figure 2a; Bröder et al., 2019; Sparkes et al., 2016; Stein & Macdonald, 2004; Tesi et al., 2014).

In the nearshore West-ESS sediments, high C/N ratio >10 and β-sitosterol concentrations (>200 μg g−1 TOC) 
highlight strong imprint of terrigenous material (Figures 2c and 3d). Marginal seas such as the Kara and Laptev 
Seas are also strongly affected by land run-off and nearshore area (Fernandes & Sicre, 2000; Peulvé et al., 1996) 
as indicated by high C/N ratio and n-alkanes (C27 + C29 + C31; Stein & Fahl, 2004a, 2004b). This is also in agree-
ment with previous reports of lower δ13C of TOC values (−27.4‰ ∼ −25.5‰; Bröder et al., 2019) and high 
lignin concentrations (0.9–1.2 mg g−1 TOC; Salvadó et al., 2016) in the ESS.

In areas of significant amount of seasonal sea ice (73°–76°N), high TOC is generally associated with enhanced 
primary production as reflected by concomitant high TN. At highest latitudes, North of 77°N, the low TOC 
sediment content reflects minor terrigenous organic carbon and limited primary production and export due to 
permanent sea ice. The distribution of spring and summer chlorophyll a in surface waters suggest enhanced pri-
mary production in the coastal waters of the ESS (Figure 2d). However, higher brassicasterol levels are found in 
the central ESS rather than in the coastal areas reflecting enhanced marine production in the marginal ice zone 
(MIZ; Figure 3a). This mismatch between phytosterol and chlorophyll patterns can in part be explained by the 
known bias of optically complex (Case 2) waters induced by high suspended particle load of more turbid coastal 
waters leading to the overestimation of chlorophyll a concentrations. Terrestrial colored dissolved organic matter 
(CDOM) is another source of bias of chlorophyll a concentrations caused by the abnormally high absorption of 
CDOM at low phytoplankton biomass such as in shelf waters (Lewis & Arrigo, 2020). Overall, primary pro-
duction in the ESS is strongly affected by terrigenous suspended particles delivered in nearshore waters. Highly 

Figure 4.  Concentrations (μg g−1 TOC) of HBIs: (a) IP25, (b) HBI-II, (c) HBI-III, and (d) HBI-IV in surface sediments. Isolines of September 20% sea-ice 
concentrations for the period 1990–1999 and 2007–2016 are presented in white dotted and dashed lines, respectively (NSIDC, https://nsidc.org).
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turbid waters together with fluctuating salinity likely explain brassicasterol minima off the IR and KR river 
mouths, a result that can introduce complication in the interpretation of sea-ice proxy indexes using sterols.

5.2.  Phytoplankton Biomarkers

Brassicasterol is primarily produced by marine diatoms thriving in open sea waters or at the sea-ice edge, while 
dinosterol is commonly synthesized by dinoflagellates in open sea waters (Volkman, 1986). In contrast to the 
Kara and Laptev Seas (Xiao et al., 2013), these two phytosterols do not show similar distributions in the ESS 
(Figures 3a and 3b). No clear correlation between IP25 and brassicasterol was found by Xiao, Fahl, et al. (2015) 
and Kolling et al. (2020). In addition, in our study the distribution pattern of brassicasterol seems to match with 
that of IP25 and HBI-II while dinosterol shares stronger resemblance with HBI-III and HBI-IV (Figures 2a, 2b 
and 3). These findings agree with brassicasterol production being associated with nutrient-rich conditions of 
the sea-ice edge while turbid waters off the IR and KR deltas do not provide favorable conditions to marine 
diatom growth. Therefore, different local and regional phytoplankton source and distribution are expected from 
different drainage basin, water discharge and suspended load of Eurasian rivers (Kolling et al., 2020; Xiao, Fahl, 
et  al.,  2015). Although dinosterol is also affected by estuarine conditions, its concentration remain relatively 
homogeneous across the ESS. It is noteworthy that this sterol in our samples is an order of magnitude lower than 
found by Stoynova et al. (2013) by using different extraction methods and internal standard quantification.

HBI-III is produced by diatoms living at the sea-ice edge and in ice-free waters (Bai et al., 2019; Belt, 2018; 
Smik, Cabedo-Sanz, & Belt, 2016). A one-year sediment trap time series from the CS has consistently shown 
higher production of HBI-III at low sea-ice concentrations (Bai et al., 2019). This finding is in line with low 
to moderate values of HBI-III (and HBI-IV) in the central to East-ESS, between the two isolines of September 
minimum ice edge (Figure 4c) and previous interpretation of HBI-III distribution (Arrigo et al., 2014; Collins 
et al., 2013; Smik, Belt, et al., 2016). Highest HBI-III and HBI-IV are likely reflecting the earlier retreat of sea 
ice in the West-CS than in the ESS and the inflow of nutrient-rich PWI providing favorable conditions for their 
production. By contrast, HBI-III and HBI-IV concentrations are extremely low in nearshore and coastal waters 
as opposed to sympagic HBIs that show moderate levels. Only in the permanent sea-ice area, do all HBIs show 
low levels. In summary, HBI-III and HBI-IV as well as dinosterol were low or absent in the permanent sea ice 
and nearshore waters while enhanced in West-CS. Intermediate values were found in the MIZ where brassicast-
erol and sympagic HBIs were abundant in accordance with our present knowledge on these biomarkers. HBI-III 
production is thus consistent with open water conditions (Belt, 2018, 2019; Köseoğlu et al., 2018; Smik, Cabe-
do-Sanz, & Belt, 2016) although recently Amiraux et al. (2021) reported the occurrence of this HBI in sea ice in 
southwest Baffin Bay.

5.3.  IP25 Variability and Spring/Summer Sea-Ice Condition

IP25 is found throughout the ESS (Figure 4a). The distribution patterns of IP25 and HBI-II are generally similar 
(Belt et al., 2016) as reported in earlier studies in the Arctic Ocean (Koch et al., 2020; Xiao, Fahl, et al., 2015) as 
opposed to Baffin Bay (Kolling et al., 2020). At high latitudes (North of 77°N), lowest IP25 together with lowest 
phytosterols and other HBIs are consistent with permanent sea ice. In the outer continental shelf, melting does not 
take place until the end of summer resulting in an extremely short phytoplankton growing season. In the eastern 
New Siberian Islands maximum IP25 can be explained by favorable production conditions. Indeed, longest season 
of fast ice formation has been observed between the New Siberian Islands and the coast (Yu et al., 2014). In ad-
dition, wind-driven polynya formation and channels between land-fast ice and pack ice also cause sea-ice diatom 
blooms (Zhang et al., 2021).

In the central ESS, simultaneous high concentrations of IP25, HBI-II and brassicasterol and moderate HBI-III 
concentrations underpin MIZ conditions (Figures 3a and 4a–4c). Similarly, maximum abundance of IP25 during 
summer is consistent with sediment trap data under MIZ conditions characterized by sea-ice algae production 
throughout the Arctic Ocean (Bai et al., 2019; Fahl & Stein, 2012; Koch et al., 2020; Nöthig et al., 2020). We can 
thus conclude that seasonal sea-ice edge and/or MIZ conditions prevailed in the central ESS over the last decades.

Lower IP25 values in the nearshore are expected from North-South sea-ice cover trends across the ESS in spring/
summer. Xiao, Fahl, et al. (2015) also found low IP25 production in the LS due to freshening by riverine waters. 
Other factors such as water turbidity in the river plume, erosion and sediment resuspension in shallow waters 
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caused by upwelling along the coast all concur to reduce phytoplankton production (Osadchiev, Silvestrova, 
et al., 2020; Osadchiev, Pisareva, et al., 2020). Lowest sympagic HBIs in West-CS are coherent with the early 
sea-ice retreat caused by summer SSTs reflecting the influence of the PWI. In general, we found a very weak cor-
relation between IP25 and spring or summer SIC (SpSIC: r2 = 0.09, p < 0.01; SuSIC: r2 < 0.01, p < 0.01; Table 1).

5.4.  PIP25 Indexes

At latitudes North of 77°N, all PIP25 values were >0.75 (Figures 5a–5c; Figure S2 in Supporting Information S2) 
reflecting permanent sea-ice cover. IP25 and phytoplankton biomarkers show intermediate to high concentration 
values in areas lying between the summer 20% SIC isoline of 1990–1999 (time interval of stable icy conditions) 
and that of 2007–2016 (time interval when sea-ice extent decreased rapidly; Figures 3 and 4). In this area, PIP25 
values are comprised between 0.4 and 0.7 reflecting the gradual northward retreat of sea ice providing optimum 

Estuarine samples included (n = 42) Estuarine samples excluded (n = 24)

SpSIC SuSIC SpSIC SuSIC

IP25 0.09 <0.01 0.11 0.01

PIIIIP25 (c≠1) 0.23 0.12 0.47 0.73

PIIIIP25 (c = 1) 0.22 0.11 0.42 0.70

PBIP25 0.19 0.41 0.27 0.58

PDIP25 0.51 0.46 0.65 0.66

Note. All p < 0.01; Data bold and underlined indicate significant correlation.

Table 1 
Comparison of Coefficient of Determination (r2) for Correlations Between PIPs and Sea-Ice Concentrations in Summer 
(SuSIC) and Spring (SpSIC)

Figure 5.  Distribution of PIP25 and the satellite SuSIC: (a) PBIP25 based on brassicasterol; (b) PDIP25 based on dinosterol; (c) PIIIIP25 based on HBI-III; (d) the satellite 
average SuSIC from 1996 to 2015 were obtained from NSIDC (https://nsidc.org). September sea-ice concentration of 20% for the period 1990–1999 and 2007–2016 are 
presented in white dotted and dashed lines, respectively (NSIDC, https://nsidc.org).
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living conditions for sea-ice diatoms and phytoplankton growth in agreement with previous observations in the 
CS (Hill et al., 2018).

PIIIIP25 and PDIP25 in the West-CS depict broadly similar distribution with values <0.2 indicating low sea ice 
to open water conditions and high phytoplankton production. At nearshore sites of the ESS, owing to the influ-
ence of fresh water and terrigenous inputs from the IR and KR, the production and export of biomarkers differ 
from those of open ocean waters. Surface salinity is another factor that may affect phytoplankton distribution as 
shown in Figure 6 by the abundances of IP25, HBI-III, brassicasterol and dinosterol along the 166°E meridian 
(from Zweng et al., 2013) and thus bias PIP25. For instance, low or undetectable HBI-III led to abnormally high 
PIIIIP25 values (Figures 4c and 5c) that are close to those of permanent sea ice (Figure 5d). This result under-
scores unfavorable conditions for pelagic phytoplankton to prosper such as stratification and enhanced turbidity 
of Eurasian rivers plumes spreading and mixing with the narrow SCC over the shelf. Biases are also evident from 
intermediate values of PBIP25 off the IR mouth resulting in misleading estimates of high seasonal SIC. However, 
dinosterol remains rather high over the shelf suggesting possible adaptation of dinosterol producers (dinoflag-
ellates) to variable salinity and suspended load (Kraberg et al., 2013; Nelson & Sachs, 2014; Wu et al., 2020). 
Interestingly, PDIP25 values are low at sites influenced by IR and KR run-off except for one site near the IR 
mouth (Figure 5b). In the LR estuary, however, the concentrations of dinosterol remain low compared to those 
of brassicasterol possibly reflecting freshwater producers of the latter (Figure S3 in Supporting Information S2; 
Xiao, Fahl, et al., 2015). Such departures should be carefully considered when using PIP25 index to reconstruct 
paleo-sea-ice in deltaic settings (Belt, 2018; Kolling et al., 2020; Xiao, Fahl, et al., 2015).

Weak correlations were found between PIP25 and SIC (either SpSIC or SuSIC, r2 < 0.41, p < 0.01), except for 
PDIP25 (Tables 1, Table S2 in Supporting Information S1; n = 42, r2 = 0.51, p < 0.01). However, our set of sur-
face sediments encompasses a range of deposition rates. In addition, from coastal waters to open sea, the ESS 
covers variable environmental and sea-ice conditions (Petrova et al., 2004; Stein, 2008). The deposition rate over 

Figure 6.  Biomarker distribution along 166°E corresponding transect from off the KR estuary to permanent sea ice. The upper panel shows the concentrations of HBIs 
and sterols. The transect of SuSIC is obtained from the satellite average SuSIC from 1996 to 2015 (NSIDC, https://nsidc.org). The lower panel displays the summer 
salinity of the upper 80 m water depths with isohalines (1955–2012, Zweng et al., 2013). The salinity front between the riverine discharge and open ocean is marked by 
salinity = 25. The inset map indicates the transect with the SuSSS distribution (more detailed information can be found in Figure 1).
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the continental shelf is about 1.1–1.6 mm year−1 (Bröder et al., 2016; Vonk et al., 2012) and decreases to 0.09–
0.02 mm year−1 toward the deep-sea basin (Li et al., 2020; Stein & Fahl, 2000). Owing to different deposition 
rates within our sites, the top 2 cm of sediment may represent different time interval, which can account in part for 
the departure from linear relationship between PIP25 and SIC. Of course, the source uncertainty of brassicasterol 
in coastal waters also reduced the correlation between PBIP25 and SuSIC (Volkman, 1986). The relationship is 
improved after removal of sites with salinity less than 25 (summer salinity gradient between the estuary and open 
ocean, from World Ocean Atlas 2013 by Zweng et al., 2013; Table 1, Table S3 in Supporting Information S1, and 
Figure S4 in Supporting Information S2). Overall, our findings suggest that PDIP25 might be more suitable for 
sea-ice reconstruction in coastal waters influenced by river run-off (Table 1). High concentrations of terrestrial 
sterols (campesterol and β-sitosterol) have been found in the Siberian marginal sea estuaries (Figures 3c and 3d; 
Xiao et al., 2013, 2015), implying them as proxies for riverine input. Therefore, terrestrial sterols (or other ter-
restrial proxies) should be considered when using IP25/PIP25 to reconstruct paleo-sea-ice environment to discern 
the influence of continental run-off.

6.  Conclusions
Spatial mapping of sympagic HBIs and pelagic phytoplankton biomarkers from 42 surface sediments revealed 
differences across the ESS and the West-CS. High productivity was inferred from dinosterol, HBI-III and HBI-IV 
concentrations in West-CS sediments as a result of the nutrient-rich PWI and early retreat of sea ice allowing for a 
longer algal production season. Low marine production characterized nearshore sites of the ESS most likely due 
to Eurasian River plumes and their eastward propagation along with the SCC. Stratification induced by freshwa-
ter from the IR and KR rivers combined with high suspended load likely account for reduced primary production 
in the ESS shelf waters.

Highest concentrations of IP25, brassicasterol, dinosterol and HBI-III found around 74°N, coincide with the aver-
age summer ice edge (20% SIC isoline) for the 2007–2016 interval, reflecting the average MIZ conditions. IP25 
and PIP25 indexes in the ESS did not show significant correlations with SpSIC or SuSIC except for PDIP25. This 
result suggests that dinosterol production was less affected by riverine inputs. Noteworthy, the generally low val-
ues of phytoplankton biomarkers in nearshore sediments at comparable levels as those found in permanent sea-ice 
areas at high latitudes underscore the potential PIP25 biases and subsequently erroneous SIC estimates. Our study 
overall warns cautiously about the use of PIP25 in regions where continental run-off is significant.
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